Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Białka SR
Другие языки:

Białka SR

Подписчиков: 0, рейтинг: 0

Białka SR – konserwatywna rodzina białek, które biorą udział w splicingu RNA poprzez swoją rolę w aktywacji spliceosomu i dalszych etapach splicingu. Swoją nazwę zawdzięczają występowaniu w ich sekwencji aminokwasowej wielokrotnych powtórzeń dipeptydu seryna-arginina (których standardowe skróty to odpowiednio: "S" i "R").

Białka SR zostały odkryte w latach 90. XX wieku u muszek owocówek (Drosophila) i w oocytach płazów, a później u ludzi. Ogólnie rzecz biorąc, organizmy zwierzęce wydają się być wyposażone w białka SR, a organizmy jednokomórkowe nie.

Budowa i funkcja białek SR

Białka SR są zbudowane z ok. 200-600 reszt aminokwasowych i posiadają dwie charakterystyczne domeny: motyw rozpoznawania RNA (RRM, z ang. RNA Recognition Motif) i C-terminalnej domeny RS (w której występują dimerowe powtórzenia seryna-arginina).

Białka SR są częściej znajdują się w jądrze komórkowym niż cytoplazmie, ale jest kilka białek SR, które kursują między jądrem a cytoplazmą. Białka z tej rodziny biorą udział w takich procesach jak: konstytutywny i alternatywny splicing pre-mRNA, translacja mRNA oraz w wielu procesach post-transkrypcyjnych, takich jak: jądrowy eksport mRNA. Tą uniwersalność umożliwia budowa tych białek, dzięki której mogą jednocześnie oddziaływać z RNA jak i innymi białkami.

Występowanie białek SR

Białka z tej rodziny występują u wszystkich kręgowców i części niższych Eukaryota. Białka SR są jednymi z najbardziej rozpowszechnionych białek w świecie roślin i zwierząt. Zachowawczość białek SR wynosi ok. 90%, sugerując ich bardzo wysoką, ewolucyjną konserwowalność i ważne znaczenie dla organizmów żywych.

Są obecne u drożdży rozszczepkowych (Schizosaccharomyces pombe), ale brak ich u drożdży pączkujących (Saccharomyces cerevisiae), które posiadają inne białka podobne do białek SR tzw. SR-like protein, które są zaangażowane w metabolizm pre-mRNA. Brak występowania typowych białek SR u tych drożdży tłumaczy się brakiem alternatywnego splicingu.

Fosforylacja białek SR

Fosforylacja i de-fosforylacja seryny w domenie RS białek SR odgrywa kluczową rolę w regulacji splicingu i może wpływać na lokalizację białek SR oraz na ich udział w translacji i transporcie mRNA z jądra komórkowego do cytoplazmy. Przykładem takiego białka jest ludzkie białko SRSF1, a także ludzkie białka SRSF3 i SRSF7, które przemieszczają się pomiędzy jadrem komórkowym a cytoplazmą. W tym celu łączą się z receptorem TAP/NFX1 w jądrze komórkowym, do czego niezbędna jest fosforylacja ich niektórych seryn w domenie RS .

Znane są cztery rodziny kinaz, których przedstawiciele fosforylują białka SR: SRPK, Clk/Sty, cdc2/p34 i topoizomeraza I. Przy czym w przypadku dwóch pierwszych znany jest szczegółowy mechanizm fosforylacji dla SRSF1.

Udział białek SR w splicingu

Funkcja jaką białka SR pełnią w splicingu można podzielić na tę zależną od eksonów i niezależną. Funkcja zależna od eksonów widoczna jest podczas tworzenia kompleksu E, kiedy w procesie zwanym definiowaniem eksonów oddziałując z miejscem ESE (z ang.: exsonic splicing enhacer) na eksonie oraz U1 i U2 nRNP na sąsiednich intronach, udział białka SR uniemożliwia pominięcie eksonu. Mogą też hamować działanie inhibitorów w miejscach ESE na tym samym eksonie (inhibitory splicingu zachowują się odwrotnie od opisanego zachowania dla białek SR).Funkcją niezależną jest uczestnictwo w interakcjach pomiędzy białkowymi czynnikami splicingowymi. Najbardziej znane to organizacja kompleksu B i C w procesie splicingu, gdzie białka SR rekrutują kompleks U4/U6●U5 tri-snRNP do spliceosomu i umożliwiają przeprowadzenie wycięcia intronu.

Podczas alternatywnego splicingu oprócz dwóch w/w funkcji dochodzi trzeci: rozpoznawanie sub-optymalnych traktów pirymidynowych w intronach i wiązanie się do nich. Związanie białka SR do w/w sekwencji powoduje rekrutację czynnika splicingowego U2AF do położonego obok traktu pirymidynowego, który dla intronów odznaczających się małym powinowactwem do U2AF jest niewidoczny. Brak takiego wiązania, powoduje nierozpoznanie końca 3’ intronu, a co za tym idzie rozpoznawany jest kolejny koniec 3’ i błędnie wycinamy dwa introny przedzielone eksonem.

Regulacje splicingu przez białka SR jest bardziej skomplikowany i zależny od fosforylacji.


Новое сообщение